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Abstract. We investigate the dynamics of a two-photon laser under conditions where the spatial variation
of the cavity field along the cavity axis is important. The model assumes pumping to the upper state of
the two-photon transition. We consider the Maxwell-Bloch equations on the basis of which we study the
stability analysis of the steady state of the system. The system is taken to be contained in a ring-laser
cavity. Asymptotic expansion of the eigenvalue and analytic information are obtained in some realistic
limits, such as very large reflectivity, very small cavity losses, or very small population relaxation rate.
The results are illustrated with an application to a specific atomic system (potassium) as an amplifying
medium.

PACS. 42.55.Ah General laser theory – 42.65.Sf Dynamics of nonlinear optical systems; optical
instabilities, optical chaos and complexity, and optical spatio-temporal dynamics – 42.25.Ja Polarization

1 Introduction

One of the main obstacles in the realization of the stan-
dard form of the two-photon laser is a technological one;
namely the difficulty in constructing a cavity in which the
modes are sufficiently separated in frequency for the two-
photon gain to prevail over the single-photon gain in an
adjacent frequency corresponding to a dipole transition
from the upper state to an intermediate one of opposite
parity. If a cavity mode happens to be sufficiently near
resonance with one-photon transition between the upper
(pumped) and the intermediate level, the gain into that
transition will take over. The basic simple model of inter-
action between matter and radiation comprises two-level
atoms interacting with a single-mode electromagnetic field
in a lossless cavity. In spite of its simplicity, the model is
intrinsically nonlinear with the atom-field coupling being
the coefficient of this nonlinearity.

A brief history of the topic may be useful here. Two-
photon lasers are a recurrent theme in the literature and
have attracted considerable theoretical interest semiclassi-
cally by Wang and Haken [1] as well as quantum mechan-
ically [2–4]. On the experimental side, a two-photon laser
has been realized and studied extensively in the microwave
region of the spectrum [5] and in the optical regime by
Mossberg and collaborators [6,7] in a cleaver, slightly dif-
ferent scheme, where the atomic pump transition is be-
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tween levels of dressed atoms. Recent work [8] in view of
continuing technological improvements in micro-cavities
even at optical frequencies has motivated the examina-
tion of certain aspects of the two-photon laser theory that
are fundamental to the process. These aspects have their
counterpart in the usual single-photon laser, but rather
different behavior is to be expected in the two-photon
case, owing to the essential nonlinearity of the process
even at weak signals. We have here in mind a degener-
ate two-photon laser with the atom pumped to the upper
state connected to the lower one of the lasing transition
by a two-photon process. Although not realized as yet in
this pure form, it probably is a matter of short time be-
fore that occurs [2–4]. The situation here is somewhat dif-
ferent from the dressed states scheme that has already
been demonstrated experimentally some time ago [6,7].
Most laser-related systems derive their feedback from a
resonator structure. The emergence of unstable behavior
in this case can be ascribed to the development of ampli-
tude oscillations in an excited but previously stable mode
or to the growth of new cavity resonances. For this rea-
son, all previous investigations of this problem have fo-
cused separately on what can be conveniently identified
as single-mode and multimode instabilities. Instabilities
of the first type involve only the cavity mode that lies
nearest to, but is not necessarily in resonance with, the
atomic transition, or the carrier frequency of an incident
field, for externally driven system. These phenomena can
be analyzed in the context of a single-mode model. The



386 The European Physical Journal D

second type involves the evolution of out-of-resonance cav-
ity modes and therefore requires a multimode treatment
for a correct description.

Most linear-stability studies avoid dealing with the
spatial dependence (∂E/∂z term in the field equation) [9]
and employ what has become known as the mean-field
limit. By taking this limit, the field equation is spilt into
a set of purely temporal equations, each of which governs
the evolution of a single longitudinal mode. Although lim-
ited in its scope, the mean-field approximation has proved
to be quite successful in studying the stability of lasers.
However, one should be aware that its predictions for any
real laser need to be checked against numerical solutions
of the exact Maxwell-Bloch equations.

The issue we have in mind has to do with the steady-
state behavior and its stability analysis of the system,
taking into account the spatial variation of the cavity
field along the cavity axis. This is most conveniently ac-
complished in a semiclassical formalism in terms of the
Maxwell-Bloch equations taking into account the spatial
dependence. Related treatments based on either simple
rate equations [10], discussing threshold conditions, or the
Maxwell-Bloch equations without the spatial dependence,
have been presented in the literature [11–13]. What we
study and present below is essentially the generalization of
the complete Maxwell-Bloch equations, usually employed
in the single-photon laser theory, to the two-photon case.
We have found it most convenient to use a formulation
presented some time ago by Narducci in the semiclassi-
cal theory of the single-photon laser [14]. We present in
this paper an analysis which has inspired by the compar-
ison between the linear stability analysis technique and
the so-called weak sideband approach, first introduced by
Casperson [15] and further elaborated by Hendow and
Sargent [16] and by Boyd, Hillman, and Stroud [17].

2 Derivation of equations

Maxwell-Bloch equations for a degenerate two-photon
laser with the atom pumped to the upper state connected
to the lower one of the lasing transition by a two-photon
process and its steady state have been derived and dis-
cussed previously in [18]. We present a brief sketch of the
derivation of the equations in order to specify the assump-
tions used in the derivation and in order to have at hand
for discussion the terms relevant to the stability analysis
of the steady state.

We consider the coupled set of Maxwell-Bloch equa-
tions, in the usual rotating wave approximation, which
govern our two-level atom when the dipole forbidden tran-
sition is replaced by a two-photon one. We consider the
degenerate case, in which pairs of photons with the same
frequency are created or absorbed, and we analyze the sta-
bility of the steady state. We assume a collection of identi-
cal homogeneously broadened two-level atoms, with ener-
gies E1 and E2 such that (E2 > E1) with E2−E1 = ~ωa,
ωa the atomic transition frequency and a generated uni-

directional single-mode classical electric field

E(z, t) =
1
2

{
E0ei(kcz−ωct) + c.c.

}
, (1)

inside a ring cavity. Here E0 is the real field amplitude,
kc the wave-number, z the cavity axial direction and ωc

represents the unloaded cavity frequency. The atoms in-
teract with the field in the dipole approximation via a
two-photon transition, where these states are assumed to
have the same parity, and thus are not connected by a
one-photon transition.

Adopting the plane-wave approximation, we reduce
the Maxwell-Bloch equations to [18]

∂F

∂z
+

1
c

∂F

∂t
= −αPF ∗, (2)

∂P

∂t
= −(γ1 + iδac)P̄ − γ1F

2D, (3)

∂D

∂t
= γ2

{
1
2

(PF ∗2 + P̄ ∗F 2)−D + 1
}
, (4)

where F, P and D are the normalized output field, two-
photon polarization and population difference, respec-
tively, (F =

√
µ(2)/~γ1γ2Ē0), µ(2) the effective dipole

matrix element for the two-photon transition, γ1 and
γ2 are the decay rates of two-photon polarization and
population difference, respectively. α denotes the unsatu-
rated gain constant per unit length of the active medium
(α = 2Nωc(µ(2))2/3/2c~ε0γ1), where N is the number of
atoms per unit volume, ε0 the vacuum electric permeabil-
ity and c the speed of light. We denote by δac = ωa − 2ωc

the detuning of the cavity mode from two-photon reso-
nance. Maxwell-Bloch equations (2–4) have been derived
by assuming an effective Hamiltonian, i.e., by assuming a
pure two-photon interaction between the two-level atom
and electromagnetic field. This approach neglects resid-
ual effects of any largely detuned one-photon transitions
between the lasing levels and other atomic levels [19].
A more precise approach consists in assuming an exact
or microscopic interaction Hamiltonian that describes the
interaction of the electromagnetic field with a three-level
cascade atomic scheme [20,21]. When the intermediate
atomic level is far from one-photon resonance the one-
photon coherence can be adiabatically eliminated and the
resulting two-photon laser equations are similar to the
present equations but include three additional detuning
terms describing frequency shifts.

The model is completed by appropriate boundary con-
ditions which, in the case of a traveling wave ring-cavity
resonator, take the form

F (0, t) = RF (L, t− (Λ− L)/c), (5)

where L is the length of the active medium; while the full
length of the ring resonator is Λ. Physically R measures
the loss of the field amplitude from the exit face of the
amplifying medium to its entrance face.



Mahmoud Abdel-Aty and Abdel-Shafy F. Obada: Semiclassical stability analysis of a two-photon laser 387

3 Steady state

In order to gain some physical understanding of the pro-
cess and discuss some aspects of the threshold conditions,
we analyze first the steady-state behavior of the system.
To study the steady state, we consider the equations in
the long-time limit by setting the time derivatives equal
to zero, for an active medium detuned by an arbitrary
amount δac from the resonant cavity mode. Under these
conditions, the output field is expected to oscillate with
a carrier frequency ωL which is neither equal to ωc nor
ωa/2, but to some intermediate value determined by the
cavity and atomic parameters. For this reason, we look for
steady-state solutions of the type

F (z, t) = Fst(z)e−iδωt, (6)

P (z, t) = Pst(z)e−i2δωt, (7)

D(z, t) = Dst(z), (8)

where δω is the frequency offset of the operating laser line
from the resonant mode (i.e. δω = ωL − ωc). The atomic
variables can be determined at once as functions of the
stationary field profile

Pst(z) = −F 2
st(z)

1− i∆
1 +∆2 + |Fst(z)|4 , (9)

Dst(z) =
1 +∆2

1 +∆2 + |Fst(z)|4 , (10)

where the detuning parameter ∆ is defined as ∆ = (δac−
2δω)/γ1. The steady state polarization and the field en-
velope are generally out of phase from one another by an
amount that depends on the detuning δac and the position
of the operating laser line. The steady state population
difference (inversion) saturates at high intensity levels in
the sense that Dst → 0 as |Fst| → ∞. To determine the
value of the output field and the form of its longitudinal
profile in steady state, it is convenient to represent the
field amplitude in terms of its modulus only,

d|Fst(z)|
dz

=
α|Fst(z)|3

1 +∆2 + |Fst(z)|4 · (11)

To make the analysis in the present paper as simple as pos-
sible we shall not consider the phase equation [18]. How-
ever, the effects of the phase variation should be taken into
consideration for a more elaborate discussion. The bound-
ary condition, expressed in terms of the field modulus is
given by Fst(0) = RFst(L). The output laser intensity can
be calculated as [18],

|Fst(L)|2 =
2αL

1− R2
|Fst(L)|2 −

1 +∆2
j

R2
, (12)

where ∆j = (δac−2δωj)/γ1, δωj is the operating laser fre-
quency. Equation (12) has two roots and at laser threshold
the intensity is not vanishing. There is coexistence of three
solutions (above threshold): the trivial and two other solu-
tions with intensity different from zero. One solution grows

with the pumping parameter up to an asymptotic value
for pumping going to infinity. The other solution decreases
towards the zero solution as the pumping grows to infin-
ity. This means that the threshold is not a second order
phase transition as in the case of single photon lasers.

The quantity c| lnR|/γ1Λ represents the decay rate of
the cavity field, and 2πc/Λ is the spacing between ad-
jacent cavity resonances. After introducing the abbrevia-
tions K = c| lnR|/Λ, α1 = 2πc/Λ, we obtain

δωj = ωL − ωc =
Kδac + α1γ1j

γ1 + 2K
, (13)

where the sub-index j reminds us of the possible existence
of multiple solutions. This is the well known mode-pulling
formula. It shows that the laser operating frequency is a
weighted average of the atomic resonant frequency and
the frequency of one of the cavity modes.

4 Linear stability analysis

The general stability analysis of the Maxwell-Bloch equa-
tions (2–4) is a rather difficult problem. The main source
of complication originates from the spatial dependence of
the field and of the atomic variables. In an attempt to get
around this problem, most linear stability analysis have
been carried out within the uniform field limit. While this
may not appear to be a very realistic approach, there are
good reasons, in fact, why useful information can be ex-
tracted even from this limiting case: (i) we can reformulate
the Maxwell-Bloch problem in terms of a new set of atomic
and field variables that are not very sensitive to limited
departures from the ideal limit. For this reason it is not
necessary to operate with unrealistically low values of the
gain or the mirror transmittivity; (ii) the mean field limit
is a good indicator of instabilities and functions as a rough
diagnostic tool. This is fortunate because the numerical
solutions of the time-dependent Maxwell-Bloch equations
require considerable efforts and some guidance can pro-
duce significant saving of time. The resonant case, is not
very complicated and can be studied exactly with limited
effort. For this reason, in this section we limit ourselves to
the exact analysis of the resonant laser problem, without
any restrictions on the gain of the active medium or the re-
flectivity of the mirrors. Our starting point is the full set of
Maxwell-Bloch equations (2–4) with δac = 0. Because the
phase of the stationary field is undetermined, it is possible
to select Fst(z) as a real quantity. In principle, a random
fluctuation of the cavity field could force the growth of the
imaginary part through a process called phase instability.
In this section we simply assume that no phase instabil-
ity can develop, so that both the field and polarization
variables remain real during the linearized evolution. The
steady state of this system of equations is given in equa-
tions (9, 10, 11). To study the stability of this steady state,
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we set

F (z, t) = Fst(z) + eλtδf(z),

P (z, t) = Pst(z) + eλtδp(z),

D(z, t) = Dst(z) + eλtδd(z), (14)

into equations (2–4), upon neglecting fluctuation terms of
order higher than one. The linearized equation of the field
fluctuation takes the form

d
dz
δf(z) = M(z)δf(z), (15)

where

M(z) = −λ
c

+
λ+ 3γ1

λ+ γ1

αF 2
st

1 + F 4
st

− αF 6
st

1 + F 4
st

2γ1 + λ

λ+ γ1

×
(

2γ1γ2

(λ+ γ1)(λ+ γ2) + γ1γ2F 4
st

)
· (16)

The formal solution of equation (15) is

δf(z) = δf(0)e
R
z
0 dz′M(z′) = δf(0)eΨ(z). (17)

The problem is that Fst is not known in closed analytic
form. We can get around this difficulty with a change of
independent variable from z to Fst, if we take advantage
of the fact that dz = dFst/(dFst/dz) and that dFst/dz is
known explicitly from equation (11) and the field fluctua-
tion takes the form

δf(z, t) = eλtδf(z) = eλtδf(0)eΨ(z). (18)

Next, imposing the boundary condition

δf(0, t) = Rδf(L, t− Λ− L
c

), (19)

we obtain the characteristic equation

λn = −iαn −
c

2Λ
(λn + 3γ1)
λn + γ1

| lnR| − c

4Λ
λn + 2γ1

λn + γ1

×
[
ln
(

(λn + γ1)(λn + γ2) + γ1γ2F
4
st(L)

(λn + γ1)(λn + γ2) + γ1γ2R2F 4
st(L)

)]
, (20)

where αn = 2πnc/Λ. The characteristic equation (20)
depends on the cavity linewidth K (c/Λγ1 = K/| lnR|)
of the population difference, and the gain of the active
medium through the output field intensity F 2

st. The origin
of the term −iαn here can be traced back to the equality
exp(0) = exp(2πni) for n = 0,±1,±2... Note that setting
exp(0) = 1 would be a mistake because it would elimi-
nate practically the entire spectrum of eigenvalues. At this
point, we have reduced the linearized problem (15) to the
solution of an infinite number of characteristic equations,
one for each value of αn.

As instructive example we wish to discuss some lim-
iting cases of the non-linear equation (20) governing the
stability of the system.

�Re λn

�αn

�R

Fig. 1. The largest real parts of the linearized eigenvalues are
plotted as functions of αn and R. We have selected αL = 1,
k = 3.55 and for γ1 = 105.

(a) Perfect reflectivity is assumed i.e. R = 1 then the
only solution of equation (20) is λn = −iαn i.e. running
waves.

(b) When the decay rate of the two-photon polariza-
tion is set to be zero, the solution of equation (20) is
λn = −iαn − c

2Λ | lnR| which means a stable mode.
(c) When we set the population relaxation rate γ2 to be

zero, a second order equation in λn results. The solution
to this equation gives the following acceptable formula for
the real part of λn

Reλn = −γ1

2
− c

4Λ
| lnR|+

√
A+
√
A2 +B2

2
,

A =
(γ1 + c

2Λ | lnR|)2

4
− α2

n

4
− 3γ1

c

2Λ
| lnR|,

B =
αn(γ1 + c

2Λ | lnR|)
2

− αnγ1. (21)

Investigation of this equation shows that no instabilities
develop in this limiting case. This can be understood sim-
ply because writing γ2 = 0 means a constant population
difference and hence no exchange of population between
the two levels (see Fig. 1). In this figure we plot the largest
real parts of the linearized eigenvalues as functions of αn
and R.

(d) Iterative state, we can solve equation (20) by sub-
stituting the value −iαn for λn in the right hand side
of equation (20). It can be asserted that the highly ex-
cited modes αn such that n � 10 are stable. This can
be seen from looking at the argument of the logarithm in
equation (20) in this case with the assumption αn > γ2,
γ1γ2F

4
st. However when γ1γ2F

4
st > (|− iαn+γ1|)(|− iαn +

γ2|) the mode becomes unstable (see Fig. 2). For increas-
ing αn the system becomes more stable as the positive
Reλn-range decreases.

The existence of an infinite number of eigenvalues is
not surprising in view of the space-time dependent nature
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Fig. 2. The largest real parts of the linearized eigenvalues are
plotted as functions of αn viewed as a continuous variable. For
all the curves displayed in the figure we have selected R =
0.8, γ̄ = 0.1, k = 3.55, and αL = 1 (curve a), αL = 3 (curve b)
and αL = 5 (curve c).

of the field and atomic variables and of the boundary con-
ditions of the laser resonator. One is remanded of the or-
dinary vibration problems, linear string, two-dimensional
membrane, etc., except that here we are dealing simul-
taneously with three fluctuation variables equation (14),
and thus on physical grounds, one expects three charac-
teristic roots λ(1)

n , λ(2)
n , λ(3)

n for each value of n. Because
αn represents the frequency separation between the nth
empty cavity resonance and the selected reference mode,
it is easy to interpret the set of roots λ(i)

n , i = 1, 2, 3, as
descriptive of the growth or decay of an initial fluctuation
that develops in correspondence to the nth mode of the
cavity. This interpretation forms the basis for a classifica-
tion of the possible unstable behaviors of the system. If
Reλ0 is positive and Reλn (n 6= 0) are all negative, an
initial fluctuation of the resonant mode will grow expo-
nentially and evolve with the same carrier frequency as
the stationary state. Thus, the linearized dynamics of the
laser can be described only in terms of the behavior of the
resonant mode fluctuation (all the other fluctuations are
damped because Reλn < 0, n 6= 0) and the instability will
be of the single-mode type. If, on the other hand, Reλ0 < 0
and, for some value of n, Reλn > 0, the nth cavity mode
will support the growth of a fluctuation whose carrier fre-
quency is different from that of the stationary state. Here,
the existence of a one-to-one correspondence between the
index n, that appears in equation (20), and the longitudi-
nal cavity modes is suggested. This informal suggestion is
founded on physical grounds. The main conceptual diffi-
culty with this interpretation is that the notion of “mode”
is not well defined when the resonator mirrors have a finite
reflectivity, and the elementary cavity excitations have a
finite lifetime. In fact, in solving the linearized problem,
we have not even introduced resonator eigenfunctions, as
one normally would in a standard boundary value prob-
lem. For this reason, we continue to refer to λ(i)

n as the set
of linearized eigenvalues of the nth cavity resonator.

A complete analysis of equation (20), particularly with
regard to the role played by the basic laser parameters,
gain, intermode spacing, reflectivity and the atomic decay
rates, has not been carried out. Equation (20) predicts
that both single and multimode unstable behavior can be
established with confidence. We begin our analysis by scal-
ing all the relevant rates of the problem to the linewidth
γ1 of the active medium. In this way, equation (20) takes
the form

λ̄n = −iᾱn −
c

2γ1Λ

(λ̄n + 3γ̄)| lnR|
λ̄n + 1

− c

4γ1Λ

λ̄n + 2
λ̄n + 1

×
[
ln
(

(λ̄n + 1)(λ̄n + γ̄) + γ̄F 4
st(L)

(λ̄n + 1)(λ̄n + γ̄) + γ̄R2F 4
st(L)

)]
(22)

where λ̄n = λn/γ1, ᾱn = αn/γ1, and γ̄ = γ2/γ1. The equa-
tion (22) can be evaluated by using the iteration method
as above (in (d)) by substituting the value −iαn for λn in
the right hand side of equation (22). It can be asserted that
the highly excited modes αn namely n � 10, are stable.
A numerical study of this problem shows that single-mode
instabilities αn = 0 tend to be favored in the presence of
high gain and laser cavity losses K > 1. These conditions
are difficult to realize in a practical system. In general, it
appears from equation (22) that single-mode instabilities
require a scaled cavity linewidth which is sufficiently larger
than unity. In order to keep the calculations presented in
this paper as realistic as possible, we have chosen to ap-
ply our model for a real atomic system, (for the transition
4p3/2−6p3/2 in potassium). The reason for choosing this
transition is the result of a compromise. On one hand,
one wants the energy of the photons involved to be as
large as possible, and preferably in the optical regime. On
the other hand, it is hard to find a two-photon transition
in the optical regime with a large coupling, since a large
two-photon coupling demands the existence of an almost
resonant intermediate level with opposite parity. The tran-
sition mentioned above involves photons with an energy
of ' 7 980 cm−1 i.e. near-infrared, and has a two-photon
coupling that is orders of magnitude larger than the other
candidates we looked at, due to the almost resonant 5s
state. Besides the atom, we should also choose a cavity. In
the model presented in this paper, we are assuming that
only one mode of the cavity field is excited. For this to be
true, the cavity should be rather small, since it then sup-
ports fewer modes, and these will be better separated in
energy. Another advantage of having a small cavity is that
the two-photon coupling µ(2) will be larger, since it is pro-
portional to V −1 (following the notation of Loudon) [22],
V being the cavity volume. We have chosen the cavity vol-
ume V = 10−15 m3. Further F and α for the two-photon
case will be proportional to V −1/2 and V −2/3 instead of
V −1/4 and V −1 for the one-photon case. The only one
that is decreasing with (V � 1) very small cavities is the
gain factor.

It is interesting to compare our results with those of
previous work where the mean field limit is appeared.
When we neglect the spatial dependence, we arrive to
equation (4) of reference [19] but taking into account a
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Fig. 3. The largest real parts of the linearized eigenvalues are
plotted as functions of αn viewed as a continuous variable. For
all the curves displayed in the figure we have selected αL = 5,
k = 0.07, γ = 0.1, and R = 0.3 (curve a), R = 0.6 (curve b)
and R = 0.95 (curve c).

normalization of the variables D → D/D0, α→ kD0 and
P → q/D0. Our formulation is based on the conventional
Maxwell-Bloch equations, but is distinguished from other
treatments by the inclusion of propagation effects, a fi-
nite mirror reflectivity and an arbitrary value of the gain
parameter. These features make the model more general
than the previous studies. An example of the behavior of
the eigenvalues in the case of a single-valued state equa-
tion is shown in Figure 2. In this figure we plot the largest
real parts of the linearized eigenvalues as functions of αn
viewed as a continuous variable. For all the curves dis-
played in this figure we have selected R = 0.8, α1 = 100,
γ = 0.1 and for different values of αL. We show that unsta-
ble situation for several values of the relevant parameters
(the only physical meaningful values of ᾱn are all the pos-
itive and negative multiples of the intermode spacing α1).
Multi-mode instabilities are not bounded by the high-loss
requirement, but they still require large values of the gain
to reach their threshold. For increasing αn the system be-
comes more stable as the positive Reλn-range decreases,
and the system is completely stable for αn > 10. In Fig-
ure 3 the largest real parts of the linearized eigenvalues are
plotted as functions of αn viewed as a continuous variable.
With the same parameters as in Figure 2 but for different
values of R. This figure gives an example of some typi-
cal real parts of the linearized eigenvalues for parameter
values that lead to multimode instability. As shown in
this figure, the beat frequency due to the superposition of
the stationary solution and of the unstable sidebands is
sensitive to the value of R. The important feature is the
monotonic shift of the positive real parts of the eigenvalues
towards higher and higher values of ᾱn for increasing val-
ues of the gain. It is important to stress that the existence
of unstable off-resonant sidebands requires a good qual-
ity cavity in the sense that K must be sufficiently smaller
than unity. This is a consequence of the fact that typical
instability ranges extend to maximum values of ᾱn of the
order of a few units. Thus, if we require that the sideband
at ᾱn = 2πnc/Lγ1 be unstable, it is necessary that the

ratio c/Lγ1 be smaller than unity. This can be arranged
by selecting large enough values of L or γ1.

5 Conclusion

We have derived the general Maxwell-Bloch equation for
the system consisting of the two-level atoms with dipole
forbidden transition, placed in a two-photon one. The
treatment has been carried out in the framework of the
semiclassical laser theory. We have calculated the spa-
tial behavior of the field strength and have shown the ef-
fect of the additional non-linearity due to the two-photon
coupling. We have computed the stability analysis of the
steady-state solution of the complete Maxwell-Bloch. Al-
though the model is rather idealized, its general features
should be relevant to a real single-mode system. The anal-
ysis presented in this paper has been inspired by the com-
parison between the linear stability analysis technique and
the so-called weak sideband approach [16]. In our case the
linear stability analysis not only agrees with the results
of the weak sideband approach, but extends its range of
applicability, particularly in the case when the cavity de-
tuning must be taken into account.

The problem we have formulated and solved in this
paper has an interesting counterpart in the microwave
regime where one can tailor at will, in combination with
the choice of the principal quantum number of the pumped
Rydberg state. The experimental realization of such a sce-
nario should be relatively easy with present day technol-
ogy. In our treatment we have focused on the degenerate
two-photon laser. It would thus be interesting to study
the non-degenerate two-photon laser. We could imagine
having a transition in which one photon is visible, and the
other is, say, infrared. The frequencies of these two pho-
tons could be chosen in such a way that we would obtain a
large two-photon coupling and hence this laser type would
be easier to realize. In this laser type would also expect
Stark shift to play a dominant role. We hope to report on
such issues in a forthcoming paper.

The authors would like to thank the referees for their objective
comments that improved the text in many points.
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